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INTRODUCTION 

The interaction of elastic waves with material inhomogeneities 

such as second-phase particles and cracks plays an important role in 

material and fracture characterization by quantitative ultrasonics [1,2]. 

These inhomogeneities represent mis-matches in material moduli as well 

as mass density compared with the surrounding matrix material and thereb) 

generate elastodynamic fields in addition to the fields when they are 

absent. These fields are referred to as the scattered fields when mea- 

sured far from the inhomogeneities. When the non-dimensional wavenwnber 

is greater than unity, ka > 1, the term diffraction is usually used in 

place of scattering. 

Diffraction of elr?stic waves by thin flat objects, cracks in parti- 

cular, has been an actively pursued subject for sometime by theoretical 

mechanicians. Due to the complexity of the presence of a third dimension, 

most work is confined to essentially a two-dimensional situation. Re- 

cently, Teitel [3], Gubernatis and Domany [4], and Datta [5], using the 

quasi-static approach and asymptotic expansion approach, respectively, 

obtained results for an elliptical crack that are valid in the Rayleigh 

limit, ka<<l. Budiansky and Rice [63 gave a general integral formulation 

for the dynamic response of an isolated three-dimensional crack. Employing 

the geometric diffraction theory [7], Gautesan, Achenbach and McMaken [8] 

investigated the diffraction by elliptical cracks valid for the region of 

short wavelength, ka>>l. A summary of the comparison with experimental 

results is given in [9] for a penny-shaped crack and [lo] for an elliptical 

crack. For the region of medium wavelength, results available are obtained 

mostly by numerical methods through a matrix approach. 



In the present paper the scattering of elastic waves by an isolated, 

flat, thin, and elliptical inhomogeneity is studied by employing the ex- 

tended version of the method of equivalent inclusion. The method of 

equivalent inclusion was originally developed by Eshelby [11,12] for 

the determination of elastostatic fields inside and outside an ellipsoidal 

inhomogeneity. Wheeler and Mura [13] first extended this method to study 

the elastodynamic response of composites where the mis-match in mass 

density is ignored. Recently, Fu and Mura [14] gave a complete formula- 

tion to extend the method of equivalent.inclusion for elastodynamic problems. 

They presented the equivalence conditions that allow the elastodynamic 

fields inside and outside an inhomogeneity to be determined. In addition 

to the presence of eigenstrains, E* ij(l), the concept of "eigenforces" ~31 

is also introduced. 

The solution procedure given in [14] requires the evaluation of 

certain volume integrals that are associated with the inhomogeneous Helm- 

holtz equation. A method for evaluating these integrals is given by Fu 

and Mura [15]. It is easily seen from Ref. [15] that the results in Ref. [14] 

reduce to the elastoststic solution when the frequency approaches zero, 

w + 0. It is further noted that since all the geometric information are 

contained in these volume integrals, scattering of inhomogeneity of any 

geometry can be obtained simply by evaluating these integrals. 

The case of the scattering of a perfect sphere is studied in detail 

by Sheu and Fu [16] and compared with classical results of Ying and True11 

iI71 - It was shown that the comparison is good up to ka about two when 

uniform distribution of eigenstrains and eigenforces are assumed. 

1 Although this term was not used in Ref. [14], it appears to be appropriate 
for this quantity as it can be seen from its definition n?=C. 

J Jkrs rs, 
E*q = Lpi.$ . 

Its unit is of course the same as body force, i.e. force per unit volume. 
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In this paper the solution for a flat, thin elliptical inhomo- 

geneity is obtained by collapsing the ellipsoid, say letting a3 + 0. 

Since the eigenstrains and eigenforces become infinite the limiting 

concept described by Mura [18] is employed. 
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ELASTODYNAMIC FIELDS OF AN ISOLATED INHOMOGENEITY 

For convenience in reading, it appears to be worthwhile to summarize 

the solution given in Fu and Mura [14]. Consider the physical problem 

of an isolated inhomogeneity embedded in an infinite elastic solid which 

is subjected to a plane time-harmonic incident wave field as depicted 

in Fig. 1. Replacing the inhomogeneity with the same material as that of 

the surrounding medium, with moduli C. 
J krs and mass density p, and include 

in this region a distribution of eigenstrains and eigenforces, the physical 

problem is now replaced by the equivalent inclusion problem. 

Following Fu and Mura [14] the total field is now obtained as the 

superposition of the incident field and the field induced by the presence 

of the mis-matches in moduli and in mass density written in terms of 

(11 eigenstrains E*. 
13 

and eigenforces, .T: 

F = Fci> + E(m) 

where E denotes either the displacement field u., the strain field E.., 
J =J 

or the stress field u... 
13 

The superscripts (i) and (m) denote "incident" 

and "mis-match", respectively. 

For uniform distributions of eigenstrains and eigenforces, the fields 

can be obtained as: 

$) (F) = - “3 Sjm(F) - CjkrsE;~l)Sjm k(F) J (21 

E (ml = (,(m) + u(m) 
mn m,n n,m)'2 

00 = c 

%Jq 

b-4 

pqmnEmn 

(3) 

(4) 



where a comma denotes partial differentiation and 

Sjm(?) = JR gjm('-")dW 

in which g. 
Jm 

is the spatial part of the free space Green's function and 

R is the region occupied by the inhomogeneity. It is noted that the 

integrals S. 
Jm 

and their derivatives must be evaluated for the region 

2 > 21 and for the region r < ?', Ref. [15]. The solution form repre- 

sented in Eqs. (l-5) gives the fields inside and outside an isolated 

inhomogeneity of arbitrary shape. 

(5) 



AN ISOLATED FLAT THIN INHOMOGENEITY 

Let the incident displacement field be longitudinal and of frequency 

w, amplitude uo: 

,(i) 
j 

= u. qj exp[iaxiqi - iwt] (6) 

where i 2 = -1 and q. 
3 

is the unit vector in the normal direction of the 

plane time harmonic wave. For a linear isotropic medium, the spatial part 

of the free space Green's function is well known. Substituting gjm(?-?I) 

in Eq. (2) and using the limiting concept' 

limit 
a3 "? = Aj 

constants (7) 
a,+0 

limit (11 = B constants (8) 
a +O a3 '5 ij 

3 

the scattered displacement urn (s)(,,t) f rom a thin elliptical flat inhomo- 

geneity can easily be obtained as: 

uy (r,t) uy (r,t) = 
3 

(aa > u lo [ 1 3 
(aa I u lo r+= 

= [(C Gmexpiar)/ar + (D HmexpiBr)/8r]exp(-iwt) 

where 

Gm = - (a2/al)[~m~jA~@~/~)+(1-2a2/~2)~mB?j'2(a2/82)~m~k~jB~j] 

Hm = (a2/al)[(B/a)3(amaj-~mj)A~(Ap/p) 

- 2(8/a) ‘kkBirn + 2(f3/a)2RmakijBij] 

'This concept is discussed in [18] in the light of Eq. (8). 

(9) 

(101 

(11) 
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c= j Y 
(-1)“(~a,)“(a,/a,) n-a%tg:-"(n/2)! 

n=0,2 11=o,2 (n+3) (n+l)n! (WI ! (n-11)/2! (12) 

n 
D=; c 

C-1) (BallnCa2/all -_~ 
n=0,2 11=0,2 ( n+3)(n+l)n!(k/2)!(n-a)/2! (13) 

in which m,j,k=1,2,3, and (al,a,), 11,' a, 8, and Ap denote the semi-axes 

of elliptical inhomogeneity, direction cosines of scattered displacements, 

longitudinal wavenumber, shear wavenumber, and mass density mis-match 

(PI-P), respectively. Also, A; and B? 
Jk 

are the reduced non-dimensional form 

of A. and B. 
J Jk' respectively, defined as follows: 

A; = Aj/@pw2uo) (141 

Bf; 
Jk 

= -B. 
Jk 

/(iau,) (15) 

Expressions for the differential cross section dP(w)/dD and total 

cross section P(w) can be obtained as before 

(161 

(17) 

where cLQ is the differential element of solid angle and 

a2uP(e ,+I = (aa,16[C Gml [C Gml (18) 

B2us(e,$) = (aaI)6[D Hml [D Hml (191 

in which the super bars denote complex conjugate. It is noted that the 

constants A? and B? 
3 Jk 

must be evaluated from the equivalence conditions 

given in Ref. [14] vith the use of the limiting concepts in Eqs. (7,8) 

and of the integration method developed in Ref. [15]. 



DETERMINATION OF A; AND B? 
Jk 

In Eqs. (9-13) the scattered displacement field is given in terms 

of the "reduced" form of the eigenforces and eigenstrains, i.e. A3 and 

B* 
Jk' 

see Eqs. (7,8,14,15). These constants must in turn be determined 

from the equivalence conditions, Eq. (14), Ref. [14]. Writing the incident 

wave field in a Taylor series the governing simultaneous algebraic equations 

can be easily obtained. Since f mij 101 and Fmij [0] vanish automatically, 

these governing equations become uncoupled and lead to a three by three 

system for Aj* and a six by six system for B* Jk' where Eqs. (25,26) in 

Ref. [14] are used. For a linear elastic medium, they are: 

Aow2uofjs[O]A; + A; = - qs 

'A"StDmmjk[OJ + 2A~DStjk[Ol}Bjk + {~6st B5m + 2uB~t} 

= - {Ahdstqrnqrn + 2Auq,q,) 

where the subscripts s,t,m,j,k = 1,2,3, repeated subscripts denote sum 

from 1 to 3, and 

4*P,2fjs(~) = - e29 'js + ~,mj - O,mj 

4npw2 D stjkCr) = ‘P[JIPstjk + Q,stjkI 

- peL[@, jtdks + ~,js6ktI 

- Aa2 $ 'mndjk 

(20) 

(211 

(22) 

(23) 

Ah = X' - X , Au = p' - u , Ap = p' - p 
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I - 

The $- and $-integrals and their derivatives are evaluated by 

the method suggested in Ref. [15]. Retailing terms up to (aa,) or (Bal) 

of the fourth order, the constants are obtained as: 

A; = - qj/Iuow2Apfj[O] + 1) , no sum on j (24) 

fj[“l = (fll[OIJ f**[Ol* f33[011 

{Bz) = [bijJS1[cj] i,j=1,2,3 

iBlj} = 
i#j 

- qiqj/ [l+~(~i[O]+~j[O])], no sum on i,j . 

i,j=1,2,3 5 = 1/4n 

where in Eq. (25) By = BT1 , B; = B;* , Bs'= B;3 ' 

Cj = -(AX+*Ap>[l + q;] , j=1,2,3 9 

bll = (X+*p) + 'C$* j j LoI + * (x+2P) 50>11 [‘I + *P5$, 11 I01 

b12 = A + haJ9.. [Ol + *lmbll + *m,**[01 33 

b13 = A+ 'r,~,jj[O] + *PC$,11[01 + *XS@,33[Ol 

b21 = ~+ xSJl,jj["l + *~~~,**['I + 2SA~,ll [‘I 

b22 = (X+*~) + x~~,jj[Ol + *~~~,**[‘I + 2S(A+2u)~,**[01 

b23 = 1 + “Z$‘,jj[OI + *LJ<$,22[01 + *~~~,33[01 

bgl = A+ X~~,jj[Ol + *LJ~JJ,~~[OI + *XCQ311[01 

b32 = h+ Xs~,jj[O] + *~1',;,33[0] + *'C9,22[0] 

b33 = (A+*~) + h~+,~~[o] + 2~15+,~~[0] + *O+*PI<G,~~.[OI 

(25) 

(261 

(27) 

5 = l/4- 5 = (l-2a2/6*)/4n 
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Note that bij#b... 
31 In Eq. (261, 0, = 01[f'. #2 = 422 [Ol , $3 = +33 [Ol. 

The f- , $- and $- functions are given as: 

4lrpw 2 f. [O] = - 
Js B2$ II01 ‘j s + ~,js[Ol - @Sjs[“l 

82$[0] = .rrala2B2110 - ((6al)2/16)Il + i(4/3)B(a:+az)} 

$,,,[O] = -[($a2B4)/121 - I1 

t~,,,[o] = -[(na,a~B4)/12] - I2 

4,33ro1 = 0 

in which 

I = lrn dQ 
A('$) 

= F(e,k) 
0 

k12 
11 = Lrn ,,2+;;;c,, = $y {E(;;k) - -p F(e,k)l 

1 

I2 

8 
F E = / (I-k2sin U) 2 1/2dw 

0 

(28) 

(291 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 

and as a3+0, 9-m/2, k2-+(l-ai/a:) and kl' = (1-k2)+a$'a:, if al > a,. If 

a,+0 and al=a2, we have I = n, 11=12=n/ZaI. 
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EXAMPLES: SCATTERING OF A CRACK AT LONGWAVE LIMIT 

Consider now the scattering of an elliptical crack as an example. 

Since the crack is a void, 

Ap = -p , AX = -X , Au = -u 

The constants A3 and B? 
Jk 

can be easily obtained by solving the simul- 

taneous equations, Eqs. (24-26): 

A; = -qj(l-ala2B2F(0,k)/4) 

B?. = 
13 

-qiqj[l+"(+,i + @,j)], if i#j, no sum on i,j. 

B?. = 
1J 

-(1+qiqj)[(X'2U)(-h+211)]/21J(31+2U) 

+ 6i36j3(l+q3qj) [(x+*d (2ui/*d3x+*d 

(36) 

(37) 

if i=j, no (38) 
sum on i,j. 

For ultrasonic applications, the longwave limit is always of interest, 

i.e. only terms up to the second order in (aa) and (8a) are retained in 

the scattered displacement amplitudes. From Eqs. (g-13), it is observed 

that, this requires that only terms of (aa) and (Ba) to the zeroth order 

be retained in Eqs. (36-38). A direct substitution of Eqs. (36-38) into 

Eqs. (9-13) easily yields the expression for the scattered displacement 

amplitudes in the longwave limit. Simple manipulation yields: 

-(*-8*/a*)(*-*v-"s~)/ (l+w)(l-2v) 

(391 . 

and 
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- (B/a)4J?&1-(Pl+~2+~3)-lljq;+ll;q;)(1-3u)/(l+v) 

where v is Poisson's ratio. 

Let the incident wave be going from the negative z-axis to the 

positive z-axis, Fig. 2, it is clear that 

q1=q2=0 93'1 

For the forward and backward scattered displacements along the z-axis, 

the direction cosines are lll=L2=0 and R3=~l, respectively. 

The displacement amplitude can be found, for example, as follows: 

(s) 
u1 

= Js) = (-J 
2 

(40) 

(41a) 

t~i~)/(aa~)~u~ = (a,/3a,){-li2(1-v-3v2) /(l+v)(l-2v))(expiaz)/az (41b) 

where the upper and lower signs refer to the forward and backward scattering 

along the +z-axis, respectively. - 
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CLOSING REMARKS 

The solution to the direct scattering of an elliptical inhomogeneity 

is obtained by employing the extended version of Eshelby's method of 

equivalent inclusion and a limiting concept. When the inhomogeneity becomes 

a flat void the solution is appropriate for a crack with very sharp tip, 

i.e. a mathematical crack. The special case of longwave limit is given as 

an example. Since the solution given is analytic;computer display of 

results for different material systems and aspect ratios can easily be 

obtained, if needed. 

13 
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